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obtain 

I ( h 3 )  = ~ 2 .  _ _ _  

1"- I / J  , - -  .. 

20 - 1 1 - -  0 2 

40 " 1 - 2Q c o s  [;n:h3(1 - ?,6)] + 0 2 

20 + 1 1 - -  k0 2 

40 " 1 + 20 cos [7rh3(1  - ?,6)] + ~0 2 

for H - K ¢ 0 m o d 3 ,  6 ,~1 .  (41) 

The first term on the right hand side of equation (41) 
represents a symmetrically broadened peak at h3= 
L (1 -y6 )  -1 for L even, while the second represents a 
symmetrically broadened peak at h3 = ( 1 -  2,6) -1 for L 
odd. There is thus a peak shift which in 20 coordinates 
is given by 

360 LZd 2 
A(20)°= + . . . .  (tan 0) ?'fi 

7Z C 2 " " 

for H - K ¢ 0 m o d 3 ,  6,~.1. (42) 

posite direction. Again, the integrated intensity or the 
broadening is not affected by layer faults. 

An estimate of c~6 can be obtained from measure- 
ments of peak shifts for spacing as well as layer faults. 
In the case of layer faults the parameter ~ can be 
estimated independently from measurements of the 
integral breadths. Inserting this value in ~6, one can 
obtain & 

Finally, we note that since deformation stacking 
faults give rise to changes in integrated intensity and 
to peak broadening but not to peak shifts, estimates of 

are not affected by changes in layer spacing at the 
faults. 

The author is grateful to Dr T. R. Anantharaman, 
Professor and Head, Department of Metallurgy, Bana- 
ras Hindu University, for encouragement and to the 
University Grants Commission, New Delhi, for the 
award of a Senior Research Fellowship. 

Conclusions 

To summarize the results, we find that spacing faults 
give rise to peak shifts for all reflexions which are 
equivalent to a change of the c parameter to c(1 +~6). 
There are no changes in the integrated intensity and 
the reflexions remain sharp and symmetrical. The re- 
sults for layer faults are slightly complicated in that 
reflexions with H - K = O  rood 3 are shifted twice as 
much as those with H - K ~ O  mod 3 and in the op- 
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Contrast Reversal of Kikuehi Lines with Specimen Thickness 

BY YASUO NAKAI 

Department of  Physics, Nagoya University, Nagoya, Japan 

(Received 29 May 1969 and in revised form 11 August 1969) 

In normal Kikuchi patterns a defect line and an excess line pass through the incident spot and a dif- 
fracted spot respectively, when the Bragg condition is satisfied. By means of selected area diffraction 
at 80 kV accelerating voltage, Kikuchi patterns were recorded from various thicknesses of a silicon 
crystal. Normal contrast was obtained from regions where the thickness was (n + ½)l, where l is the 
extinction distance and n is an integer, while the contrast was reversed for those regions where the 
thickness was nl. This result, can be explained by a theory of inelastic scattering; it is contrary to that 
obtained by Thomas & Bell (Proc. Fourth European Regional Conf. Electron Microscopy, Rome 
(1968), 283) where normal contrast was obtained for nl and reversed contrast for (n+ ¼)I. 

1. Introduction 

Electron diffraction patterns from fairly thick speci- 
mens (several thousand Angstrom) consist of Bragg 
spots and Kikuchi patterns. Kikuchi (1928) interpreted 
Kikuchi lines as being the interference pattern from 
Bragg reflexion of inelastically scattered electrons, and 

the main features of their geometry and contrast (excess 
or defect) were explained by this simple theory. 

Secondary maxima in the Kikuchi lines similar to 
those observed in the case of diffraction spots were ob- 
served by Uyeda, Fukano & Ichinokawa (1954) in 
diffraction patterns from a thin film of molybdenite. 
Kainuma's (1955) theory of Kikuchi lines explains 



350 C O N T R A S T  R E V E R S A L  O F  K I K U C H I  L I N E S  W I T H  S P E C I M E N  T H I C K N E S S  

these secondary maxima qualitatively. Gjonnes & 
Watanabe (1966) later studied the fine structure of 
Kikuchi lines in detail and showed that it depends on 
the deviation from the Bragg condition of the incident 
beam. 

Recently, Thomas & Bell (1968) studied the thickness 
dependence of the Kikuchi line contrast using the se- 
lected area diffraction technique, and concluded that 
normal Kikuchi line contrast was obtained from regions 
of the crystal where the thickness was nl, while the 
contrast was reversed for regions where the thickness 
was (n + ¼)l, where l is the extinction distance and n an 
integer. This conclusion is inconsistent with the fact 
that the contrast of extinction fringes formed by the 
inelastically scattered electrons is similar to that for the 
elastically scattered electrons (Kamiya & Uyeda, 1961 ; 
Watanabe, 1964). The purpose of the present work is to 
re-examine the conclusion of Thomas & Bell: the pres- 
ent result, contrary to their conclusion, is that the con- 
trast of a Kikuchi line is reversed as the thickness of 
the crystal increases by an odd multiple of a half of the 
extinction distance. This can be explained by the theory 
of inelastic scattering of Fujimoto & Kainuma (1963). 

2. Experiment 

Low-angle wedge-shaped silicon specimens prepared 
by chemical etching (Laurence & Koehler, 1965) were 
used for the production of Kikuchi patterns for various 
crystal thicknesses. The selected area diffraction tech- 
nique at 80 kV was applied throughout the experiment. 
The size of the selector aperture was about 18 x 4-5/~, 

which corresponded to about 0.8 x 0.2/1 on the speci- 
men plane. 

The following precautions were taken for the correct 
operation of selected area diffraction. First, the focal 
length of the objective lens was set so that the first 
intermediate image produced by the objective lens was 
formed exactly on the selector aperture, as shown in 
Fig. l(a). Otherwise, selected areas on the specimen 
plane would not be the same for different points of the 
diffraction pattern, as illustrated in Fig. l(b), in which 
parts A '  and B' are the selected areas for the incident 
ray converging to O' and the diffracted ray converging 
to H' respectively. 

An error similar to that mentioned above may also 
arise from spherical aberration of the objective lens. 
Even when the image due to the transmitted beam is 
focused on the selector aperture, as shown in Fig. 2, the 
selected area for the ray converging to H '  is shifted 
from that for the axial ray by a distance &, in the op- 
posite direction to the reciprocal lattice vector corres- 
ponding to H'. This results in an effective change of 
crystal thickness at that region which gives the dif- 
fracted ray passing through the selector aperture. The 
formula for spherical aberration (Hirsch, Howie, 
Nicholson, Pashley & Whelan, 1965) leads to 6= C8c0, 
where Cs is the spherical aberration constant and c~, the 
scattering angle. In the present experiment C8 is about 
5 mm and c~ is 4.8 x 10 -2 rad for 440 reflexion at an 
accelerating voltage of 80 kV. Therefore 6 is about 0.5/~, 
which is not negligible compared with the size of the 
selected area. In the present experiment, that part of 
the crystal was used where the extinction fringes were 

A Bt!A I 
Specimen ' = 

Objective Lens 

. \ \ - ~  \ \  \ \ \ \ \ \ \ \ \ \ ~ \ ~ -  . . \ \ \ \ \ \  

Selector 
Aperture 

Intermediate 
, Lens 

i 

I 
(a) (b) 

Fig. 1. The first intermediate image produced by the objective lens; (a) correct operation of selected area diffraction ; : h) incorrect 
operation. 
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nearly parallel to the reciprocal lattice vector of the 
relevant reflexion. Thus the shift did not result in a 
change of thickness in the regions giving rise to the 
incident and diffracted rays. 

The leakage magnetic field of the intermediate lens 
may deflect the first intermediate image produced by 
the objective lens. When the lens current of the inter- 
mediate lens is changed from the value for microscopy 
to that for diffraction, the first intermediate image is 
usually shifted. The shift measured in the present in- 
strument was less than 0.2p perpendicular to the ex- 
tinction fringes. The effect of the deflecting field was 
neglected. 

3. Results 

Fig. 3 and 4 are bright-field images and corresponding 
diffraction patterns at the Bragg reflecting positions 220 
and 111 respectively. The small rectangular area on 
each micrograph indicates the position and size of the 
selector aperture. The experimental results are summar- 
ized as follows. 

(i) When the selector aperture is placed on a dark 
fringe, where the thickness is (n+½)l [Fig. 3(a)], 
normal Kikuchi patterns are obtained, i.e. defect 
and excess Kikuchi lines go through the incident 
and diffracted spots respectively. 

//// 
/ / /  

H 

l \ \ \ x \ \ \ \ x x x \ x \ \ \ x x \ x ,  

Objective Lens 

Selector 
Aperture 

Fig. 2. The shift of the selected area caused by spherical aberra- 
tion. fi: the shift of the selected area; e: the scattering angle; 
O,H: foci of the rays in the ideal lens; H': real focus of the 
non-axial ray. 

(ii) When the selector aperture is placed on a bright 
fringe, where the thickness is nl[Fig. 3(c)], the con- 
trast of the Kikuchi pattern is reversed. 

(iii) When the selector aperture is placed between 
bright and dark fringes, there are two cases: a 
crystal thickness of (n +¼)l [Fig. 3(d)] and a crystal 
thickness of (n-¼)l [Fig. 3(b)]. In the former case 
the Kikuchi pattern looks similar to that of cas3 
(ii) and in the latter, similar to that of case (i). 

Fig. 5 shows the diffraction pattern when the first 
intermediate image is formed not exactly on the selector 
aperture. Two kinds of contrast effect are observed, as 
illustrated in Fig. 6(a), i.e. one is similar to the extinc- 
tion contour from a bent crystal [parts A and B in Fig. 
6(a)] and the other is similar to that from a perfect 
crystal [part C in Fig. 6(a)]. It should be noted that the 
contrast is reversed in the left and right halves of the 
photograph, along the line parallel to pp' [Fig. 6(a)] 
which corresponds to the locus of equal thickness. 

As described in § 2, the area selected by the aperture 
depends on the position of the diffraction pattern in 
this case. The diffraction pattern near points O, A, B 
and H of Fig. 6(a) is considered to be produced from 
parts O', A', B' and H '  of the specimen as shown in 
Fig. 6(b). 

4. Discussion 

(i) Comparison with the experiments of Thomas & Bell 
Although Thomas & Bell first pointed out the con- 

trast reversal of Kikuchi lines, their results and ours are 
quite different in the local variation of detailed contrast. 
They reported that the Kikuchi line from a bright 
fringe gives normal contrast (defect line through the 
transmitted spot and excess line through the diffracted 
spot), whereas the result of the present experiment 
shows that the Kikuchi line from a dark fringe gives 
normal contrast. According to Thomas & Bell the con- 
trast of a Kikuchi line is reversed from normal when 
the selector aperture is moved from a bright fringe to 
a position corresponding roughly to a crystal thickness 
equal to an odd multiple of a quarter the extinction 
distance. In the present experiment, on the other hand, 
the contrast reversal is observed when the selector 
aperture is moved from a dark fringe to a bright fringe. 
The variation of contrast is more marked for the 220 
reflexion (Fig. 3) than for the 111 reflexion (Fig. 4). In 
the case of the 111 reflexion, the secondary maxima 
on the Kikuchi line is quite noticeable because of the 
large structure factor and the small Bragg angle. This 
gives rise to the complicated Kikuchi lines for the 
deviated Bragg reflexion position. Care is necessary 
not to confuse the secondary maxima with the principal 
maximum. 

(ii) Comparison with theory 
Fujimoto & Kainuma (1963) and Fukuhara (1963) 

discussed the intensity of diffraction patterns from 
inelastic scattering for the case where the incident beam 
satisfies a Bragg condition. Although these theories 
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(a) • ( b )  ( c )  

(d) (e) (f) 

Fig.3. Bright-field images and corresponding diffraction patterns of silicon taken under 220 reflexion conditions at 80 kV. 
A small rectangular area on each micrograph indicates the selector aperture. 

[To face p. 351 
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used different methods of solving the equation for 
inelastic waves, Kainuma (1965) showed that the two 
methods are equivalent. This means that these theories 
would give the same result if the same assumption were 
used for the energy-momentum relation. 

In both theories, energy conservation between the 
elastic wave, the inelastic wave and the wave excited in 
the crystal, is assumed to hold, while momentum conser- 
vation between the three waves does not always hold 
because of the finite crystal thickness. However, the 
inelastic waves which satisfy the momentum conser- 
vation condition make the main contribution to the 
final intensity. 

In Fujimoto & Kainuma's theory, waves with vari- 
ous wave-vectors are excited in the crystal to give 
inelastic scattering with a definite energy loss, while in 
Fukuhara's theory, a definite relation is assumed be- 
tween the energy and the wave vector of the wave 
excited in the crystal. These different energy-momen- 
tum relations result in different intensity distributions 
in the diffraction pattern. 

By use of equation (37) of Fujimoto & Kainuma's 
theory and equation (20) of Fukuhara's theory the 
intensity curves near the transmitted and diffracted 
spots were calculated for a crystal thickness of four 
times the extinction distance. The results are shown in 
Fig. 7. Fujimoto & Kainuma's theory gives stronger 
background intensity than Fukuhara's theory because 
the energy-momentum relationship in the latter theory 
provides very little momentum conservation for large 
angle scattering, and therefore gives very weak back- 
ground. The above two theories give different widths 
for a Kikuchi line: the former theory gives the same 
width for a Kikuchi line near the incident spot and that 
near a diffracted spot, while the latter theory gives 
different widths. The result of the latter theory is found 
to be very different from the experimental result. This 
implies that the assumption of a definite energy-mo- 

mentum relationship is inadequate for an interpreta- 
tion of the present result. Therefore, in the following, 
the theory of Fujimoto & Kainuma was used for 
comparison with the experimental results. 

Equation (37) of Fujimoto & Kainuma's theory is 
given as 

Ig'=Q + C 2  - -  
sin(dD) sin(d'D) 

(aD) + c3 (d'D) 

2 + d  D1 '~-C4 ( d ' - d  cos(  2 / 

sin(d'D) + sin(dD) 
+ Cs . . . .  -{d ~ + d)D ' 

where Cl-s are monotonic functions of the parameters 
W and W' which indicate the deviation from the Bragg 
condition for elastic and inelastic waves, D is the thick- 
ness of the crystal and d and d' are defined as 

d=  2nil/1 + ~,2 

d' = 2rill/1 + W'2 

where 1 is the extinction distance. 
For small angle inelastic scattering, such as that due 

to plasmon excitation, the main terms are the first and 
fourth, and the other terms are negligible. The first 
term gives the background and the fourth term the 
main part of the intensity of the Kikuchi line. The con- 
trast similar to the bent extinction contour in Fig. 5 is 
explained by the fourth term. This term becomes 
C4cos(dD) for small values of I W ' -  WI, and gives the 
contrast reversal with a change in thickness of half the 
extinction distance. 

For large angle inelastic scattering the main terms 
are the first and second, because in the large angle 

(ooo) (220) 

i 

O 

-0"5 0 0"5 w' 0'5 0 0"5 w' 

Fig.7. Calculated intensity profiles of the Kikuchi line near the transmitted and diffracted spots for the 220 reflexion, a: Fuji- 
moto & Kainuma's theory, ANN'.~(q)= C (C: constant), W=0, D=4d.  b: Fukuhara's theory, Uq=const., W=0, t=4Vh/ko.  
The notation is the same as that in the original papers. 



ACTA CRYSTALLOGRAPHICA,  VOL. A26, 1 9 7 0 - - N A K A I  PLATE 32 

(a) (b) (c) 

II • 
. q  

(d) (e) (f) 

Fig.4. Bright-field images and corresponding diffraction patterns of silicon taken under 111 reflexion conditions at 80 kV. 

[To face p. 352 
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Fig.5. Diffraction pattern of silicon obtained under conditions such those shown in Fig. l(b), at 80 kV. The Bragg condition 
is not exactly satisfied for the 111 reflexion. Two kinds of contrast effect are observed, as illustrated in Fig.6(a). 

r---CI II),~t 
! 

" ~  ~,'l~ ~A-- . - P '  ~ ~ ; ,  Fringes 

• I • ~ , L  "~  0 0 

, ', 
• " ' I o 

(a) (b) 
Fig.6. (a) Contrast  for the conditions of Fig. 5. (b) Illustration of the selected area corresponding to Fig. 5. 
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scattering region the value of d'  is much larger than 
that of d, and CI and C2 are larger than C3, C4 and C5. 
The second term gives the contrast corresponding to 
that apparent in part C of Fig. 6(a). 

In Fujimoto & Kainuma's theory the fourth term 
in their equation (37) is due to the intra-branch scat- 
tering. As is well known (Howie, 1962; Fujimoto& 
Howie, 1966), this shows that the intra-branch scat- 
tering contributes mainly to the contrast effect in the 

J ~  t t̂ % 
I I • 

% IL, # 

0 0 0  

/'\ 
I ; 

220 
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I I 
I I I 
I I I l i l l  I -,/, 

S~ j 
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i "  I t,'s-x " 

(b) 
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;S 
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i t ~ 

I I 
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/ " ,  
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"r;I < 
ti 

220 

(d) 

Fig. 8. Densitometer curves corresponding to Fig. 3 and theore- 
tical curves (broken lines). (a), (b), (c) and (d) correspond 
to Fig.3(a), (b), (c) and (d) respectively. 

small scattering-angle region. The second term cor- 
responds to the interaction between intra-branch and 
inter-branch scattering. A detailed examination of this 
term shows that the inter-branch inelastic scattering 
contributes considerably to the contrast effect in the 
large-angle scattering region as shown in Figs. 5 and 
6(a). 

The densitometer curves of Fig. 3(a), (b), (c) and (d) 
are reproduced in Fig. 8(a), (b), (c) and (d) respectively. 
The broken curves in Fig. 8 are the result of numerical 
calculations using Fujimoto & Kainuma's theory for 
the case where the Bragg condition for the 220 reflexion 
is exactly satisfied. The extinction distance is assumed 
to be 650 /~. The intensity is normalized so that the 
theoretical background coincides with the average of 
the intensity maximum and minimum of the 000 and 
220 Kikuchi lines. The contrast reversal of theKikuchi 
lines observed in this experiment is successfully ex- 
plained by the theory, as seen in Fig. 8. 

Some deviations are shown in the detailed profiles of 
Fig. 8. The reasons for this may be as follows: 
(1) In the calculation the scattering cross-section is 
assumed to be independent of the scattering angle, and 
Umklapprozess is neglected for simplicity; (2) the 
Bragg condition is not exactly satisfied experimentally 
because of technical difficulties; (3) multiple inelastic 
scattering contributes to the diffraction patterns; (4) 
the thickness is not exactly uniform in the selected area. 
The absorption effect and many-beam effect must be 
also taken into account for detailed comparison. 

The author would like to express his sincere thanks 
to Professor R. Uyeda and Dr Y. Kamiya for encour- 
agement and kind guidance. He also expresses his 
thanks to Professor Y. Kainuma for helpful discussions. 
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